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Data Science Tasks



Data Science Tasks

- Computing . Mapping inputs (X) to output : Using data to calculate
proportions y. certain feature of the world

- Aggregation metrics . if the world had been

- Clustering different: counterfactual

- Visualizations . prediction.

Reference: Miguel A. Hernan, John Hsu, Brian Healy. "Data science is science’s second chance to get causal inference right: A classification of data science
tasks", arXiv:1804.10846v2



Data Science Tasks - Examples

What proportion of i What is the probability of ~ : Will taking the drug A .
women aged 60-80 having a stroke next year reduce, on average, the risk
years had a stroke . for women with certain . of stroke in women with '
last year? characteristics? certain characteristics?



Data Science Tasks - Confusion Matrix

What you're trying to do

A
5SS vvmsvmvvvvvomosvvvov— !
Approach you're Causal
using : : :
1 g ; . Inference
[ \ ; ;
| : You're able to provide a Nice benchmark, poor Misleading results, bad
. snapshot of your data. : performance. : decisions.
. Why predict if you have Low error predictions. Biased estimations.
. the actual? : :
Causal Inference Cost ineffective, but . Cost ineffective, not the Unbiased estimation of

: cool! . best performance. . actions' effects.



Prediction Vs Causal



Prediction

Most of successful applications today in DS
are merely predictive!

1) Alarge dataset with inputs and outputs;

2) An algorithm that establishes a mapping between
inputs and outputs;

3) A metric to assess the performance of the mapping.

All the information required is in the data!




Causal

Confusion
- Spurious correlation
- Anecdote
- Science reporting

It's hard!
- Definition is tricky
- Causal inference requires untestable assumptions
- | can only observe one potential outcome for each case



Am | facing a prediction or causal problem?

dn(Xo,Y)  om or 0Y
dXo  0Xo Y 0X,

n: Pay-off function

X,: Decision

Y: Outcome

lllustrative example: Umbrella x Rain
dance

Reference: Prediction Policy Problems. By Jon Kleinberg. Jens Ludwig. Sendhil Mullainathan. Ziad Obermeyer.



The clash of the worlds



(A part of) The Data Science world

Ul

Epidemiology Graphical Causal Models

J Miguel Hernan Judea Pearl and Elias Barenboim

Deep Learning

Yann LeCun, Geoffrey Hinton and
Yoshua Bengio

Invariance

Jonas Peters, Bernhard
Scholkopf and Martin
Arjovsky

Modern classification and Boosting and XGBoostk

reg ression Robert Schapire, Yoav Freund and Tiangi
Chen

Robert Tibshirani and Trevor Hastie

ta VRN

-
ﬁ N . New and old school Social Sciences and the
o 470 P Econometrics potential outcomes
Fairness ML limitations " Susan Athey and Joshua Angrist Guido Imbens and Donald Rubin
Shakar Mohamed, Timnit Gebru s

Alex D'amour and Joaquin Quinonero-candela



(A part of) The Data Science world

e | »
Fairness

Shakar Mohamed, Timnit Gebru

ML limitations

Alex D'amour and Joaquin Quinonero-candela



Causality as a necessary part of predictive world

e

Epidemiology Graphical Causal Models

Miguel Hernan Judea Pearl and Elias Barenboim

Invariance

Jonas Peters, Bernhard
Scholkopf and Martin
Arjovsky

A o
[ ﬁ / < New and old school Social Sciences and the
[\\ NEE T 4% Econometrics potential outcomes
Fairness ML limitations SusanAtfiey and Joshua Angrist Guido Imbens and Donald Rubin

ShakagiohamedalimuitCery Alex D'amour and Joaquin Quinonero-candela



The causal data science world

The epidemiologists
- Represent assumptions with Causal DAGs

. - Use potential outcomes to estimate
Epidemiology parameters and effects
Hauetteman - Randomized Controlled Trial challenges

Causal Diagrams: Draw Your Assumptions
Before Your Conclusions

Learn simple graphical rules that allow you to use
intuitive pictures to improve study design and data
analysis for causal inference.

vy HARVARD

UNIVERSITY



https://www.edx.org/course/causal-diagrams-draw-your-assumptions-before-your
https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/

The causal data science world

Invariance
Jonas Peters, Bernhard
Scholkopf and Martin
Arjovsky
Inserting causal requirements in learning
algorithms, improving prediction by making
models causal
R LA - Invariant risk minimization
EIERnts ) e - Invariant Causal Prediction

Causal Inf . ] .
: - Causality for Machine Learning



https://arxiv.org/abs/1907.02893
https://arxiv.org/abs/1501.01332
https://arxiv.org/abs/1911.10500
https://mitpress.mit.edu/books/elements-causal-inference

The causal data science world

ﬂ -

New and old school

Econometrics
Susan Athey and Joshua Angrist

N < V4
-
THE PATH FROM CAUSE TO EFFECT

Old School
Trying to convince new generations the
good and old econometrics can solve their
problems

New School
- Economists working in tech companies
- Bridge between ML and econometrics,
trying to use the first to answer question
that matter for the second
- Heterogeneous causal effect, multi-armed
bandits


https://www.mostlyharmlesseconometrics.com/
https://www.masteringmetrics.com/

The causal data science world

Causal DAGs and Do calculus solves I
everything! CAUSALITY e
- Explain all ML limitations with DAGs L THE
- 24/7 telling ML people they should be NN BOOK OF
using DAGs WHY

Graphical Causal Models

Judea Pear! and Elias Barenboim - “All the impressive achievements of —HoDELS REASONNG, &
ANDINEERENCE THE NEW SCIENCE
deep learning amount to just curve JUDEA PEARL OF CAUSE AND EFFECT

fitting”

Judea Pearl @

,_A Judea Pearl @yudapearl - 12 A\ Judea Pearl
Q As a co-author of a book on probablllstlc graphical models,

When | see an article on explalnablhty, ask yourself: "What does it explain? I am curious to see the reaction °f economists to this book. eg :

The data-fitting strategy of a model-blind fitter? or real-life events such ook it e i o 1 ekt e Aespaclyoe S

as death or survival?" This draft belongs to the former kind. No reader of ; &
would have authored it. Is it still an is’sue?

Daphne Koller knows what "interventions" are and how to model them for
drug discovery. But how do her ML employees take it?

X Gregg Barrett @GreggBarrett - 14 @ Judea Pearl @ www.ar-tiste.xyz G
We've discussed the dire need of econometrics for a Causal Inference
text; here is one: google.com/books/edition/....

s ; Unfortunately, it enslaves econometric equations to the rules of

| feel that when talking about "explainable" there needs to be more algebra (See Preface Egs. (0.3)(0.4)), thus taking structure out of
input on the causality side. #Bookofwhy economics.

Bayesian Networks, Causal Al,

@yudapearl , insitro

Check out circa 51:30 where Daphne Koller speaks about using
"interventions" for drug discovery
soundcloud.com/longrunpodcast...

@yudapearl Four Principles of Explalnable Artificial Intelligence @NIST
draft: nist.gov/artificial-int...



https://www.theatlantic.com/technology/archive/2018/05/machine-learning-is-stuck-on-asking-why/560675/
https://www.theatlantic.com/technology/archive/2018/05/machine-learning-is-stuck-on-asking-why/560675/
https://www.theatlantic.com/technology/archive/2018/05/machine-learning-is-stuck-on-asking-why/560675/

Why is it interesting to have a graphical
probabilistic models background?



Causality is at the center of most ML criticism

A ctri+f for "causal” in a couple of famous papers about ML limitations
- Underspecification Presents Challenges for Credibility in Modern Machine Learning (17
matches)
- Failing Loudly: An Empirical Study of Methods for Detecting Dataset Shift (2 matches)
- Decolonial Al: Decolonial Theory as Sociotechnical Foresight in Artificial Intelligence (4
matches)
- Invariant Risk Minimization (6 matches)



https://arxiv.org/pdf/2011.03395.pdf
https://arxiv.org/pdf/1810.11953.pdf
https://arxiv.org/pdf/2007.04068.pdf
https://arxiv.org/pdf/1907.02893v1.pdf

PGM is the base of Graphical Causal Models

s Graphical Causal Models

Judea Pearl and Elias Barenboim

The edge
of ML
limitations
discussion

Pearl himself was a pioneer on PGM: Pearl, J., “Reverend
Bayes on inference engines: A distributed hierarchical
approach,” Proceedings, AAAI-82, 1982.



Many suggested solutions use PGM language

Famous researchers are turning their attention to
causality also, like Yoshua Bengio and Bernhard
Scholkopf.

Data Generating Process

- Goal: Diagnose T from F and X

Varies

Stable \ e /
T: Pneumonia
D: Department e e
Sy

F: Style features

R ° \ Stable

+ Some of these mechanisms will be stable across environments, others are

unstable and more likely to change

+ Ex: Effect of pneumonia and style on X-ray image does not change.
Ex: Protocols/preferences for style features differ from department to
department or even technician to technician

‘/W\‘ e

)\/\7/; )\"”l
d s g
Y \.‘/0 X: Y o\‘.‘// o(X) R Y F2t
Z z Y Y Z(0)
(a) (b) (c) (d)

The images link to the papers.


https://www.youtube.com/watch?v=FGLOCkC4KmE
https://arxiv.org/pdf/2011.15091.pdf

How to deal with causal questions?



Causal - Core Concepts, Notation

W: Treatment assignment

X.: Features / Characteristics

Y: Observed outcome

Y ': Outcome that would be observed if treated

Y %: Outcome that would be observed if not treated



Causal - Core concepts

Potential outcome
The outcome we would see under each possible treatment option (Y ").

Counterfactual
Slightly different than potential outcomes, but often used interchangeably.

What would have happened had the action been different?

treatment decision is made, any outcome is a potential outcome: Y1 or ¥ ° .
After treatment there's an observed outcome Y #and a counterfactual one ¥ 1A,

Confounding
Anything that can impact both Wand Y .



Causal - Causal Effect

World

World |
Everyone gets W =0

World Il
Everyone gets W = 1

mean(Y?°) mean(Y")

Average Causal Effect = E[Y" - Y?]



Causal - Randomized Controlled Trial (RCT)

It's almost like having two new
worlds!

- Golden standard;

- Solves all our problems!

- It has its own challenges, but once solved
the results are robust;

- People in academia are used to do it.

Sere




The challenge

If random testing is a way to avoid all the difficulties of estimating
causal effect, why do we even bother?

- It may not be ethical
- It can be costly

The challenge is estimating causal effect using either just or using it with some
random test data.



How to solve causal inference problems with
observational data?



From random to observational

08

0.6

04

0.2

0.0

Feature distribution for RCT

0 Not treated
treated

Feature distribution for treated and not treated

08 W Not treated
freated

06

04

02

00



Causal - Assumptions

SUTVA

The outcome Y depends only on the individual features. No interaction/interference between
individuals.

Consistency
The observed outcome under the treatment W must match the potential outcome Y = YW

Conditional Ignorability
No unknown confounders: from the Y' L Y°| W in RCT, to the Y' L Y°| W, X in observational studies

Positivity
The chance of being treated is positive: P[W =1 | X = x] > 0 for all x. The treatment can't be
deterministic.



Matching

Not Treated

Treated



Matching

Treated Not Treated




IPTW: Inverse Probability of Treatment Weighting

P(A=1|X=1):

P(A=1]|X=0):

Treated

P(A=0|X=1):

P(A=0|X=0):

Not Treated



IPTW

Creates a pseudo-population where treatment assignment no longer depends on X. There's no
confounding now.

- _ 1
Wezght -~ Pr[A=a|X=]]



Causal Inference tricks!



Causal Inference - Train Test Treat Compare

Reference: Causal inference in economics and marketing by Hal R. Varian



Causal Inference - Regression Discontinuity

Age Profiles for Death Rates in the United States
40 4

354 2

Motor vehicle accidents

Death rate per 100,000 person years
1o
S
\ ‘

Suicide

19.0 19.5 20.0 20.5 21.0 21.5 22.0 22.5 23.0
Age

Fig. 2. Death rates by age by type of death. Reprinted with permission from ref. 13.

Reference: Causal inference in economics and marketing by Hal R. Varian



Causal Inference - Diff-in-diff

x N s

s74 = sales after ad campaign for treated groups
stp = sales before ad campaign for treated groups
Scq = sales after ad campaign for control groups

scp = sales before ad campaign for control groups

We assemble these numbers into a 2 x 2 table and add a third
column to show the estimate of the counterfactual.

The counterfactual is based on the assumption that that the
(unobserved) change in purchases by the treated would be the

Period Treatment Control Counterfactual
Before STB Scs ST8
After S7A Sca S8+ (Sca —Sca)

same as the (observed) change in purchases by the control group.
To get the impact of the ad campaign, we then compare the
predicted counterfactual sales to the actual sales:

Reference: Causal inference in economics and marketing by Hal R. Varian



Machine Learning + Causal Inference: Causal
Forest



Causal Forest - What is it about?

. Heterogeneous treatment effect using observational data, estimating the effect on
individuals rather than the average for the whole population or subgroups.

. trying to learn the causal effect by grouping similar observations in the same leaf and
comparing the treated and untreated.

Why it’s interesting: for decision making in causal inference problems you need confidence

intervals since you can’t validate in the data.

Reference: Estimation and Inference of Heterogeneous Treatment Effects using Random Forests by Stefan Wager and Susan Athey



Causal Forest - Definitions

Observed data: (X, Y;, W)

Unconfoundedness: {Y}, Y} L W; | X;
Treatment effect: 7(x) = E[Y! — Y? | X; = X]
Treatment propensity: e(x) = P[W; =1 | X; = x]

A tree is honest if, for each training sample /, it only uses the
response Y; to estimate the within-leaf treatment effect 7 or to
decide where to place the splits, but not both.

Reference: Estimation and Inference of Heterogeneous Treatment Effects using Random Forests by Stefan Wager and Susan Athey



Causal Forest - From CART to Causal

u CART: fi(x) = |{i:X,-€1L(x)}] 2 (ixiel(x)} Vi

= Causal: #(X) = = xerm] (i Wi—LxeL)} ¥ —

1
i Wi=0,X;€L(x)}| Z{i:\/\/,-:o,x,-eL(x)} Yi
m Ensemble of B trees: 7(x) = B_; Zle #5(x)

Reference: Estimation and Inference of Heterogeneous Treatment Effects using Random Forests by Stefan Wager and Susan Athey



Causal Forest - Learning

1) Draw a random subsample of size s from {2, ... , n} without replacement, and then divide into two
disjoint sets of size | and J, both of size s/2;

2) Grow a tree via recursive partitioning. The splits are chosen using any data from the J sample,
but without using Y-observations from the |-sample;

3) Estimate leaf-wise responses using only the I-sample observations.

The splits are done maximizing the variance of the estimated effect using the J sample. Each leaf
should contain k or more I-sample observations of each treatment class.

Reference: Estimation and Inference of Heterogeneous Treatment Effects using Random Forests by Stefan Wager and Susan Athey



Causal Forest - Learning

Estimation on the leaf using:

1 1
7(x) = — Y, - : Y )
{i:Wi=1, X; € L}| {i:Wi::lZ,XiEL} e a=10 2 L)) {'i:WFOZ,XiGL}

The splits maximize the estimation variance for each example in J.

Reference: Estimation and Inference of Heterogeneous Treatment Effects using Random Forests by Stefan Wager and Susan Athey



Causal Forest - What is happening inside it?

- The estimation in the leafs addresses the effect of treatment;

- Theidea is that in each leaf it behaves like a random experiment in a sub group

- The restriction of having k or more examples of each treatment helps to make it closer to a
random experiment (both classes equally represented) and also to prevent overfitting (at least k
examples);

- We maximize the variance so it's meaningful to split into two groups for a certain feature value, it
worths treating them separately;

- The more the treatment is far from a RCT, the harder it's to work with a small k, because it may
be hard to find treated and untreated examples for very specific splits (a certain space in the
features space).

I’'m just comparing treated and not treated examples using a tree to split it
smartly and build a fair group to do this comparison for individual/sub groups examples.

Reference: Estimation and Inference of Heterogeneous Treatment Effects using Random Forests by Stefan Wager and Susan Athey



Predictive Machine Learning Limitations



Spurious correlation

US spending on science, space, and technology =
correlates with
Suicides by hanging, strangulation and suffocation
Correlation: 99.79% (r=0.99789126)
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
$30 billion 10000 suicides
S $25 billion 8000 suicides g
g’ $20 billion 6000 suicides %
;_Vj
$15 billion 4000 suicides
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

-®- Hanging suicides -4~ US spending on science




Spurious correlation

US spending on science, space, and technology
correlates with

Suicides by hanging, strangulation and suffocation

Correlation: 99.79% (r=0.99789126)

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
$30 billion
o
2
S . 4
'3 $25 billion
g
2
% $20 billion
%]
=
$15 billion
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

-®- Hanging suicides -4~ US spending on science

2009

2009

10000 suicides

8000 suicides

6000 suicides

4000 suicides

sapioms Suidueyy



Spurious correlation

(a) Husky classified as wolf (b) Explanation

Figure 11: Raw data and explanation of a bad
model’s prediction in the “Husky vs Wolf” task.

Before After

Trusted the bad model 10 out of 27 3 out of 27
Snow as a potential feature 12 out of 27 25 out of 27

Table 2: “Husky vs Wolf” experiment results.

Ribeiro et al. 2016. "Why Should | Trust You?” Explaining the Predictions of Any Classifier. KDD16.



Concept drift
y PXX=x|y=1)

P(X="Messi" | y = "Futebol")

P(X="estadio" | y = "Futebol")

Tempo



Invariance



Causal invariance

A is a city's altitude, T is the average year temperature and we have a sample for
a couple of countries.

p(a,t) = p(a | t)p(t) T oA
= p(t | a)p(a) AT

How would we know the right direction?



Causal invariance

Now we add an identifier to each country:

pAustm'a ( a, t) _ pAustria (t | (1,) pAustria ( a)
pSuiga (a, t) _ pSuiga (t ‘ a)pSuiga (a)

Hypothesis: physics is invariant on different contexts

pAustm'a (t | a) _ pSuiga (t ’ a) _ p(t , a)



Causal invariance - method

Y = f(X) + Ny

Where Y and the noise N are independent.

Then, there's no such model that X —_— g( S_/ ) _|_ sz

And X is independent of N.

Hoyer et al.: Nonlinear causal discovery with additive noise models.NIPS21, 2009
Peters et al: Causal Discovery with Continuous Additive Noise Models, JMLR 2014
Peters et al.: Detecting the Direction of Causal Time Series.|CML2009



Causal invariance - method

1. Fit a function f as a non-linear model of X on Y (assumption of noise additive model)
2. Compute the residual N =Y - f(X)
3. Check whether N and X are statistically independent

- 4001 R— -
g .o.-‘:,:: ; f’: 200 B ":'0-;‘
o ':-““ﬁ‘.";'; &) . ;." o
g u. -\ " m ‘ q *
g Ofi%.. g O o oy
ol S B ot
- LY 4+ i
8 B -200 . ,::.‘f
1000 2000 3000 -q 0 0 10 20
altitude temperature

Indeed, there's a strong dependence in the anti causal direction when we look to real data.



Invariant Causal Prediction - ICP



Invariant Causal Prediction - ICP

We're going to search for a subset of features that present a stable relationship
with the target.

Hipétese 1 (predigao invariante): Eziste um vetor de coeficientes v* =
(7%, ...,'y;)t com suporte S* = {k : v; # 0} C {1,...,p} que satisfaz

para todo e € € : X© tem uma distribuicao arbitraria e

4
Yée=p+ X"+ €%, €6 ~ F. e e 1L X§., &

onde u € R € o intercepto, €¢ € um ruido aleatério com média zero, variancia
finita e a mesma distribuicao F, para todo e € €.



Invariant Causal Prediction

1) Train with all data

Train a model using the data from
. residues on them have the same
. mean and variance than each
other context. Do a joint test to

. decide rejecting or not that
ésubset

. all the context and the subset of
. features. Calculate the residues.

2) Test the residues

Test for every context if the

3) Final model with
stable variables

In the final subset, we use the
. intersection of all the not rejected
. subsets from the previous step.



Invariant Causal Prediction

Ty ~ N(07 0‘(6))

€Ty ~ N(07 0'(6)) z3 ~ N(0,0(e))

y ~ I1 N(O, ]-) Yy~ I —+ 2333 + N(07 0(6))
zs ~ y+ N(0,1) zz ~y+N(0,1)
Result: Result

S ={z;} S ={z1,z3}



Invariant Risk Minimization - IRM



Invariant Risk Minimization - IRM

The objective function is modified to reflect the preference for a model which is optimal under different
contexts.



Linear regression case

Lirm (®,w) = 2 eee, R (w0 @) + AD(w, ®,¢)

/

2 (B - y)(X°B - y)" Diin(w, @, €) = ||Ex-[(XB)T(X°B)|w — Ex- y[(X°B)TY*]|”

n

Ré(wo ®) = R*(B)



Linear regression case

Gradient descent: Berr =B — YV g 55, L(B)

LIRM((I)7 w) — Zeeet, R (w © (I)) + AD(wa (I)7 6)

/ N
oV v

1 4 (XB)"X°B) — (X*B)"w))
l (X(XB)T — (X°B)"y"))



Implementing paper example

Applying the previous equations for the linear
regression case and using the same set of
equations used in the paper as the

motivational example. L1 ~ N(07 O-(e))
y ~ z1 + N(0,0(e))



Results

Erro nos contextos presentes no conjunto de treino, IRM x RM

05
04

0.3

Ero

02

0.0

perfeito
modelo

It's a test set, but the contexts are present in the training sample.



Results

Ero

0.6

0.5

04

03

02

0.1

0.0

Erro nos contextos desconhecidos, IRM x ERM

modelo

perfeito



Time, invariance and the Time Tree



Time and data

Tempo Tellll)(l) fontexto period x_1 y x_2

2 (1 0 1 2470984 -15570138 -17.971118

| Contesto] ; ; 1 1 40614529  4.154478  5.154888

¢ |3 2 1 -45239741 -67.811901 -67.205011

5|4 3 1 -25.560394 -68.037824 -68.738988

% 'Y » X, o s 4 1 50446213 54.842746 53.820852



Time tree

It's very close to a decision tree using the ID3 algorithm, except that:
1)  We need to decide about a time granularity to group our data (hour, days, week, month, year?)

2) Ahyper parameter controls the minimum sample required in every time split on the leafs
3) When deciding on the best split, the gain is calculated by averaging the gain on all periods

By forcing examples from all periods to be present in every leaf and optimizing the average gain, we
expect to force the algorithm the requirement of learning invariant in time rules.



Real data

- Data was extracted from GloboEsporte.com

- News from soccer clubs

- From June 2015 to November 2020

- All clubs from first league

- The label is the club name from which the page we extracted it

- Transform in a binary classification by considering one team as the positive case (Flamengo in
our case)

Experiment
- Split data in time, train from 2015 to 2017 and evaluate on 2018 to 2020
- Compare time tree to decision tree



Results

AUC by year on the GE Club News dataset - Out of time set from 2018-01

= Time Tree
=== Decision Tree

2015 2016 2017 2018 2019 2020
Year



Questions?

Contact

Twitter: @lgmoneda
E-mail: lgmoneda@gmail.com



mailto:lgmoneda@gmail.com

